🦙

Llama.cpp Server

AI & Machine Learning

موتور استنتاج کارآمد C برای مدل‌های LLaMA با سرور HTTP

Deployment Info

استقرار: 2-5 min
دسته: AI & Machine Learning
پشتیبانی: 24/7

Share this guide

Overview

Llama.cpp Server is a high-performance C++ inference engine optimized for running LLaMA and other large language models on commodity hardware. With zero Python dependencies and advanced quantization support (GGUF format), it delivers exceptional performance through CPU-optimized inference, making powerful AI accessible on VPS instances without expensive GPU requirements.

Key Features

CPU-Optimized Inference

C++ implementation with SIMD acceleration (AVX2, AVX512, NEON) for exceptional CPU performance.

Aggressive Quantization

2-bit to 8-bit quantized models (GGUF) reducing memory footprint while maintaining quality.

OpenAI API Compatibility

HTTP server with /v1/chat/completions, /v1/completions, /v1/embeddings endpoints.

Multi-Architecture Support

Compatible with LLaMA, Mistral, Mixtral, Yi, Phi, Falcon, StarCoder, and more.

Extended Context Windows

Support for 4K to 32K+ tokens with efficient KV cache management.

Production Features

Request queuing, concurrent inference, streaming, Prometheus metrics, health checks.

Common Use Cases

- Cost-effective AI API backend replacing OpenAI calls
- Edge and embedded AI deployment on ARM systems
- High-volume batch processing without rate limits
- Privacy-critical applications with on-premise inference
- Real-time AI integration with low-latency streaming
- Offline and air-gapped environments

Installation Guide

Build from source with CMake. Install gcc, g++, cmake, libcurl-dev. Compile with 'make server'. Download GGUF models (Q4_K_M recommended). Create systemd service. Configure Nginx reverse proxy with SSL and rate limiting. Enable huge pages, set CPU governor to performance, bind to specific cores with taskset. Pre-load models with --model-file argument.

Configuration Tips

Start with --model, --port 8080, --threads, --ctx-size 4096, --batch-size 512. Set --host 0.0.0.0 for network access. Enable metrics with --metrics. Tune --n-gpu-layers, --mlock, --numa, --flash-attn for optimization. Use reverse proxy with authentication. Implement API key validation. Monitor memory with OOM alerts.

Technical Requirements

System Requirements

  • حافظه: 8GB
  • CPU: 4 cores (AVX2 recommended)
  • ذخیره‌سازی: 15GB

Dependencies

  • ✓ GCC 11+ or Clang 14+
  • ✓ CMake 3.14+
  • ✓ libcurl
  • ✓ GGUF model files

به این مقاله امتیاز دهید

-
Loading...

آماده‌ی استقرار اپلیکیشن خود هستید؟ ?

Get started in minutes with our simple VPS deployment process

برای ثبت نام نیازی به کارت اعتباری نیست • استقرار در ۲ تا ۵ دقیقه